
Fraglets – a Metabolistic Execution Model
for Communication Protocols

Christian F. Tschudin
Computer Science Department, University of Basel, Bernoullistrasse 16

CH – 4056 Basel, Switzerland. Email: christian.tschudin@unibas.ch

Abstract— In this paper we introduce a molecular biology
inspired execution model for computer communications. The
goal is to lay the ground for automatic network adaption and
optimization processes as well as the synthesis and evolution
of protocol implementations. Our execution model is based on
the unification of code and data, featuring a single unit called
“fraglets” that are operands as well as operators. We have built a
simulator and started to program classical communication tasks
with fraglets that show metabolistic pathways patterns like the
ones found in biological cells. We give an example of a fraglet
implementation for a non-trivial flow–control–with–reordering
protocol and briefly discuss how to search the fraglet program
space with genetic algorithms.

Keywords:Fraglets, active networking, metabolistic computation,
automatic protocol synthesis.

I. I NTRODUCTION

The hypothesis underlying our investigation is that the
current process of protocol development – design, implemen-
tation, standardization and deployment – has hit a complexity
wall that can only be overcome by automating the search for
new or better algorithmic solutions. Network configuration is
another field where the management of very large networks
has to be automated and where optimization efforts should
not require continuous human intervention. This applies for
example to scenarios where each household hosts hundreds
of network nodes as well as the current Internet where a
large amount of manual management effort is needed to keep
this infrastructure running. Our interest is in automating as
much as possible of the network’s operation, including the
ability to adapt to changing border conditions and to evolve
the network’s functionality.

In this paper we introduce an execution model for com-
munication protocols that resembles the chemical reactions
in living organisms. The underlying theme is that nature has
developed a mechanism both for continuous operations as
well as evolution using the processing of macromolecules.
We introduce “fraglets” as the equivalent of such molecules.
Fraglets are small elements that representfragmentsof a
distributed computation. These computations are carried out
by the processing and the exchange of fraglets. At the end
there are no data or code packets: Because fraglets operate on
fraglets – similar to molecules that operate on molecules –
it is irrelevant to differentiate between “code” and “data”.
Although the old distinction might provide some guidance
in the implementation process (by humans), these categories

become void at the level of fraglet execution as well as the
long term prospect of automated software evolution.

In the next section we will briefly review the main contexts
underlying fraglets, namely “active packets” in computer net-
working and “metabolistic pathways” in molecular biology. In
Section III a formal definition of fraglets will be given. We also
introduce a small set of tag matching rules that becomes an
instruction set well suited for the efficient implementation of
protocol software. Section IV gives simple “fraglet processing”
examples and shows a complex case of a flow control protocol
implementation with fraglets. We discuss automated protocol
synthesis in section V before concluding with section VI.

II. RELATED WORK

A. Active Networking

The goal of active networking is to make a computer
network “retargetable”. This enables to customize a network
and to decide at run time which function should be performed
where [6]. Mobile code is used to inject new functionality at
different levels of granularity: The “Programmable network”
approach permits to remotely install complete software mod-
ules whereas “active packets” become self-contained capsule
that control their own fate.

Active networking is in a first place a mechanism for
handling mobile code in a data exchange network: Special
languages and runtime environments are used that permit the
conversion of program code into data packets as well as the
implicit or explicit installation of code at the remote side. The
conversion process from code to transferable unit is in many
systems inaccessible or tightly controlled (e.g. Java based
systems) in order to preserve the language’s safety properties.
In case of functional languages it is conceivable to use closures
as active packets and to encode data in form of program
instructions. As we will see, fraglets resemble this approach.
However, their flat syntactic structure, the common storage
space and the fraglet’s operations for direct manipulation at the
representation level is different and is directly geared toward
mobile computations.

B. Cell Metabolism

The word metabolism stands for the chemical processes
that take place in a living system. Typically, the cell’s func-
tioning is described as a continuous process where complex
substances are broken down into simpler ones (catabolism)
or energetically richer ones are assembled from simple units

(anabolism). Chemical pathways are a description of a cell’s
metabolism: They describe the chain of chemical reactions
that implement catabolism or anabolism. Pathways are not
simple “state transition diagrams” where one substance is
transformed into another one: Instead, each segment of a
pathway has an equilibrium as chemical reactions are usually
reversible. Overall, however, the flow of activity has a direction
that is driven by external energy wherefore metabolism is
sometimes also defined as the capture, processing and transfer
of (chemical) energy. One of the most known pathways is the
“Tricarboxylic Acid Cycle” (TCA) where carbon molecules
are converted to CO2 and water. Figure 1 shows the stages of
the TCA cycle, see also [1] for an online resource on metabolic
pathways.

Fig. 1. Chemical pathway showing the TCA cycle [3].

Fraglets inherit the concept of chemical pathways but differ
insofar as the fraglet model does not attempt to model chem-
ical reactions. Fraglets can react only in very restricted ways
and the operations are – in the current form of the model –
irreversible.

C. Automatic Protocol Synthesis

There exist first results on the feasibility of synthesizing pro-
tocols and their implementations by automatic means. Perrig
and Song describe in [2] their search for protocol specifications
that satisfy a set of given security properties. Using an iterative
deepening approach, a generator walks through the specifi-
cation space and feeds the found candidates to a protocol
screener. In [5] this work is extended by a code generation
phase that transforms the found protocol specification into a
Java implementation. Sharples and Wakeman show in [4] how
protocol implementations can be synthesized from scratch.
Using a genetic algorithm approach they evolve solutions with
increasingly better fitness. The example protocol reported on
is a reliable transfer protocol.

III. F RAGLET MODEL

In this section we introduce the fraglet processing model and
show its operations with a few basic examples. Fraglets have
surprising strong ties to formal methods as well as molecular
biology. At the theory level, fraglets belong to string rewriting
systems and reach back to the work of Emil Post published
in 1943. More recently, string rewriting (and splicing) has
seen a renaissance in the context of DNA computing where
it provides an adequate formal basis. For a more complete
treatment we refer to [7].

A. Fraglet Packets and Tag Matching

Fraglets are symbol strings[s1 : s2 : : : : sn] that represent
data and/or protocol logic. Most naturally, fraglets are encoded
as packets where the packet header fields contain the symbol
values.

...

outgoing

incoming

fraglet

processing

fraglet
store

packet node

Fig. 2. Schematic model of a node storing and processing fraglets.

Each node in the communication network has a fraglet store
to which incoming fraglets (packets) are added (Figure 2).
The store implements a multiset i.e., if several instances of
the same fraglet are received the system will keep track of its
multiplicity. The node continuously examines the fraglet store
and identifies which fraglets should be processed. To this end,
a simple tag matching operation is used: Based on the front
symbol of the fraglets the node can decide which action should
be applied to one or more fraglets.

Simple actions lead to the transformation of a single fraglet,
including its transfer to another node. More complex actions
combine two fraglets as if they were involved in a chemical
reaction. Both types of actions provide the basic steps through
which a fraglet system makes progress. If several actions are
possible at some point in time, the system randomly picks
one action, atomically removes the involved fraglets from the
store, processes them and puts potential results back into the
store. It is also possible to execute fraglets in parallel as there
are no side effects except for the atomic extraction from the
store.

One important aspect of the tag matching is that the effort to
decide on and execute an action should be bound. For example,
we do not want to introduce complex pattern matching on
fraglets. By limiting the tag matching to a few head symbols
as well as restricting ourself to simple actions we can keep
the time per fraglet operation constant. Also, assuming simple

enough operations we can imagine a hardware based imple-
mentation that processes fraglets “at wire speed”.

B. Instruction Set for Fraglet Processing

We have defined a simple prefix programming language for
fraglets. The instruction set is fixed and has six “transforma-
tion” and three “reaction” rules. A reaction means that two
fraglets are jointly processed, while a transformation applies
to a single fraglet only. In the following we denote fraglets as
[s1 : s2 : : : : tail] wheresi is a symbol andtail is a (possibly
empty) sequence of symbols.

Transformation rules:

Op Input Output

nul [nul : tail] – (fraglet is removed)
dup [dup : t : u : tail] [t : u : u : tail]

exch [exch : t : u : v : tail] [t : v : u : tail]
new [new : t : tail] [t : ni+1 : tail]
split [split : t : : : : : � : tail] [t : : : :], [tail]
send A[send : B : tail] B [tail] (unreliably)

The nul head, for example, means that a fraglet shall
be removed from the execution context.dup duplifies theu
symbol at the third position while the preceding fieldt will
become the new fraglet’s head symbol.exch swaps the two
symbols at the third and forth position,new creates a new
and unique symbol for this context. Thesplit operator breaks
the fraglet in two at the first marker position (�). Finally, the
send head symbol is responsible for (unreliably) transferring a
fraglet to another context whose name is given by the second
symbol. We use a subscript prefixX [. . .] to specify the place
where a fraglet is stored.

Reaction rules:
Op Input Output

match [match : s : tail1], [tail1 : tail2]
(merge) [s : tail2]
matchP [matchP : s : tail1], [tail1 : tail2]
(persist) [s : tail2] [matchP : s : tail1]
matchS [matchS : s : t : tail1], [tail1 : tail2]

(sustain) [s : t : tail2] [s : t : tail2]

Eachmatch rule in this set of instructions combines two
fraglets and produces one or two fraglets as a result. For
example, the “merge” instruction concatenates two fraglets
with matching tags. The “persist” variant (matchP) moreover
puts back a copy of the initial[matchP : : : :] fraglet to the
store, thus acts like a catalyst.

IV. FRAGLET PROGRAMMING EXAMPLES

A. Header Rewriting

The simplest useful operation is the rewriting of the header
field. Given a fraglet[in : tail] we would like to obtain a
fraglet [out : tail]. The “program”

[matchP : in : out]
does the job (See Figure 3): This fraglet will bond with the
input fraglet and produce the desired output by appending the
input’s tail to the newout tag.

[out : tail]

[matchP : in : out] [in : tail]

Fig. 3. Confirmed Delivery Protocol

B. Simple header tag rewriting.s

As a next example consider a confirmed-delivery protocol
(CDP) that transfers somedata to nodeB and returns anack
fraglet to the originating nodeA. Assuming that the channels
are reliable, we can use the following program:

A[matchP : cdp : send : B : deliver]

B [matchP : deliver : split : send : A : ack : �]

Figure 4 shows the states through which the system is
stepping. This program will transfer any incoming[cdp : data]
fraglet’s payload to node B and will return an[ack] fraglet.

[ack]

[cdp : data][matchP : cdp : send : B : deliver]

[deliver : data][matchP : deliver : split : send : A : ack : *]

[send : A : ack]

[send : B : deliver : data]

[split : send : A : ack : * : data]

[data]B

A

Fig. 4. Confirmed Delivery Protocol.

The previous implementation of the confirmed delivery
protocol is expressed in the classical static protocol style which
requires portions of the protocol logic to be preinstalled at the
remote nodeB. The same protocol can be implemented in an
“active networking” style where the nodeB does not know
about the protocol in place and all activities are controlled by
the sender nodeA. The active fraglet version of CDP is:

A[matchP : cdp : send : B : split : send : A : ack : �]

The following execution trace shows that again thedata

string has been transferred and anack has been returned. The
initial catalytic program is shown only in the first entry where
it is “activated” by the[cdp : data] request:

A[cdp : data]

A[matchP : cdp : send : B : split : send : A : ack : �]
) A[send : B : split : send : A : ack : � : data]
) B [split : send : A : ack : � : data]
) B [send : A : ack]

B [data]
) A[ack]

B [data]

C. Credit–Based Flow Control with Reordering

The previous example of confirmed-delivery provides a
basic flow-control functionality if the sender waits for the[ack]
fraglet (by picking it up with a[match : ack : : : :]). For a more
complex example we implemented a flow control protocol
where the sender can send up toN packets before blocking on
the ack for the first message. An additional complexity is that
we permit the channel to reorder (but not lose) messages, so
the protocol has to re-establish the correct sequence of packets
before delivering them. In the following we describe in words
the protocol’s functioning and discuss its execution graph.

The driving element of the system is the producer loop
which injects a new data item to ship, then waits for a local
’OK’ signal, after which it starts producing the next item.
For each new datum we acquire a token which will identify
the datum and as soon as there is such a token available, the
’OK’ signal is dispatched. Thus, the producer can generate
new items as long as there is a token available.

The token together with its corresponding data item is then
sent as a combined fraglet to the remote node. Because of the
reordering channel the incoming fraglets have to wait until it
is their turn to proceed. This is achieved by having a waiting
fraglet that matches exactly the next expected token’s name.
Once the next valid token has arrived and been identified we
split the thread of control. One side continues towards the
consumer which consumes the datum and signals that it is OK
to release the token. The other thread of control is the token
that waits for the consumer’s signal. Once both have joined
the token returns to the originating host. There it queues in
the right order and waits for its turn to start a new journey.

The full system comprises less than 40 fraglets (see the
Appendix). An interesting view is revealed by the execution
graph of this system (figure 5). However, without further
annotations the graph looks like a complex web of chemical
pathways.

An interpretation of this web can be done that associates
loops with the abstract entities of classical protocol imple-
mentations. For example, the producer and consumer loops
(magenta) are easily detectable. Other control loops are the
sender credit book keeping at the sender side and the re-
ordering logic at the receiver side (red). Finally, we have
the credit token loops (green) and the payload deliver path
that crosses the protocol’s metabolism (brown). The uncolored
edges are either synchronization events between control loops
or parameter passing operations during computations on other
arguments.

credit
tokens

N N/N+1/P

r0/N/N+1/P
r1/N/N+1/P
r2/N/N+1/P

r30/N+1/P
r31/N+1/P
r32/N+1/P

r33/N+1
r34/N+1
r35/N+1
r36/N+1
r37/N+1

c0/P
out/ok/P out

ok out

r39

r38/N+1
r39/N+1

N+1

t0

t0/N

t1/N

send/N/N+1

t1/N+1

c1/ok/P
c2/ok/P

c4/ok
c3/ok/P

payload

next
expected
token

step circular list

consum
er

producers0/N

s2/N

s21/N
s22/N

NN/N+1

s23/N+1
s24/N+1
s25/N+1

s1/N

ring/N+1 s20/N+1

s20/N

ring/N ring
a1/ok/P

a10/ok

a11/N/N+1

send/N/N+1/P a10

ok

a0/ok/P

N/N+1

a11/P

in/ok/P produce

N/N+1

Fig. 5. Flow control with credit and reordering: “control loops”

V. EVOLVING PROTOCOL IMPLEMENTATIONS

We have started work on the automatic fraglet synthesis
using genetic algorithms. The fraglet environment is well
suited for such a code breeding approach for two reasons. First,
unlike other programming languages, fraglets have (almost) no
syntactic constraints: Any string of symbols is a valid fraglet.
Second, fraglets tend to be small (see the examples) and are

therefore easy to search for: The challenge of evolutionary
protocol synthesis lies in the trial of different re-combinations
of simple base fraglets, not the synthesis of the one–big–
program.

For the time being our system works by doing off-line
evolution of complete communication systems. That is, we
generate initial configurations by placing a variable number
of random fraglets in the nodes. Each system configuration is
then run for a limited number of steps and its score evaluated.
The fitness function is dependent of the target behavior we
would like this system to have. For example, it can include
the number of successfully acknowledged data packets, the
“activeness” of the solution found (less pre-installed code on
a remote node is better) or its effectiveness (number of steps
to achieve a transfer/ack cycle). After ranking the systems
we select the best individuals and add new combination of
systems (generated via crossover and mutation) to the pool of
configurations before starting a next tournament round.

Our first experiences indicate that optimizing protocol im-
plementations is well feasible. More difficult is the creation
of working protocols from scratch which is an effect of an
all-or-nothing threshold where either the protocol is working
or not. The definition of good fitness functions is also crucial
as the system is excellent at finding “cheats”.

In the long run we expect new “programming styles” to
emerge from evolving protocol software. Instead of having
manually defined functional “modules” inside communication
layers we will see a dense mesh of intersecting “pathways”.
The next step will be to move from off-line evolution to an
on-line system where the communication software continues
executing its task while optimization and adaption processes
are running in parallel.

VI. CONCLUSIONS

The tag matching systemintroduced in this paper shows
a packet processing model where packets (fraglets) represent
code and data at the same time. This enables to express mobile
code based protocols in a very natural way. Unifying code
and data is an important step towards the automatic synthesis
of communication software as it enables the evolution of
parameter data as well as the generation of functional code
and code shipping logic with a single formalism. The resulting
system will resemble complex metabolistic pathways and
depart considerably from the layered engineering approach to
communication software.

REFERENCES

[1] Kyoto Encyclopedia of Genes and Genomes, Metabolic Pathways.
http://www.genome.ad.jp/kegg/metabolism.html

[2] A. Perrig and D. Song. A First Step towards the Automatic Generation
of Security Protocols. In Proc. Network and Distributed System Security
NDSS 2000, Feb 2000.

[3] T. Paustian. Microbiology Webbed Out. University of Wisconsin-
Madison, http://www.bact.wisc.edu/microtextbook/ ,
2003.

[4] N. Sharples and I. Wakeman. Protocol construction using genetic search
techniques. In Real-World Applications of Evolutionary Computing –
EvoWorkshops 2000, LNCS 1803, Apr 2000.

[5] D. Song, A. Perrig and D. Phan. AGVI – Automatic Generation,
Verification, and Implementation of Security Protocols. In Proc 13th
Conference on Computer Aided Verification CAV 2001, Jul 2001.

[6] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall
and G. J. Minden. A Survey of Active Network Research. IEEE
Communications Magazine 35(1), 1997.

[7] C. Tschudin. A Metabolistic Execution Model for Active and Passive
Protocols. Uppsala University Technical Report 2003-30, May 2002.

APPENDIX

FRAGLET IMPLEMENTATION OF A FLOW-CONTROL

PROTOCOL WITH CREDITS AND REORDERING

Producer side:

Producer loop: emit a [in : ...] fraglet
with a unique name as payload,
wait for the ‘ok’ fraglet before continuing
A[matchP : p produce :new : p request]
A[matchP : p request : in : ok]
A[matchP : ok : split : p produce :* : nul]
A[p produce]

ring of identifiers (currently 3 credits)
enlarge the ring for more credits.
A[ring : n0]
A[n0 : n1]
A[n1 : n2]
A[n2 : n0]

catch a new ‘in’ request, store the params:
a10: callback name, a11 : payload
A[matchP : in : split : match : ring : dup : s0 :

* : exch : a0 : a11]
A[matchP : a0 : exch : a1 : *]
A[matchP : a1 : split : match : a10]
A[matchP : s0 : exch : s1 : s21]
A[matchP : s1 : exch : s2 : *]
A[matchP : s2 : split : s20]

Let the “ring” pointer advance by one element,
leave a copy of next pointer value at tag ’s26’
A[matchP : s21 :matchS : s22 :match]
A[s22 : dup : s23]
A[matchP : s23 :exch : s24 : s26]
A[matchP : s24 :exch : s25 : *]
A[matchP : s25 :split : ring]

The forwarding logic - currently done with passive
version: send a [ni : ni+1 : Data] packet
and a pre-installed fraglet at the receiver side
will continue processing
A[matchP : s20 :match : s26 :match : a11 :split :

a10 : * : send : B]

Consumer side:

The “passive” receiver waits at the next
expected ni tag. This receiver fraglet
is rewritten after each successful delivery
B [match : n0 : r0 : n0]

Isolate fields: ni, ni+1 and payload.
Call the ’out’ delivery
B [matchP : r0 : exch : r1 : r30]
B [matchP : r1 : exch : r2 : *]
B [matchP : r2 : split : t0]
B [matchP : r30 : exch : r31 : c0]
B [matchP : r31 : exch : r32 : *]
B [matchP : r32 : split : r33]
B [matchP : c0 : out : ok]

build a new resequence start code
(the passive entry point), store it at tag ’r39’
B [matchP : r33 : dup : r34]
B [matchP : r34 : exch : r35]
B [matchP : r35 : exch : r36 : t1]
B [matchP : r36 : exch : r37 : *]
B [matchP : r37 : split : dup : r38]
B [matchP : r38 : exch : r39 : r0]

consumer loop, waiting for a fraglet with
form [out : handshaketag : payload]
B [matchP : out : exch : c1 : nul]
B [matchP : c1 : exch : c2 : *]
B [matchP : c2 : split]

Receiver side callback (tag ’ok’), will be called
by consumer loop. Callback does:
- enable new receiver side entry (at ’r39’)
- send back the credit token fraglet
B [matchP : ok : split : match : r39 : match : * :

match : t0 : match : t1 : send : A]

