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Abstract:

The  following  document  has  been  written  in  the  course  of  a  students  project
concerning  fraglets,  a  metabolistic  approach  to  communications  protocols,  at  the
University of Basel. It describes the steps taken to integrate basic network functionality
into  an  existing  fraglet  interpretation  environment,  some  difficulties  encountered
while  designing  a  reliable  fraglet  based  communications  protocol,  the  methods
adopted to solve them and a description of said protocol. It includes data from some
measurements  of  the  performance  of  that  protocol  and  proposals  regarding  the
fraglets instruction set.



Introduction:

Fraglets  are  a  new  programming  model  inspired  by  metabolic  pathways  in  living
organisms.  They allow  a  simple  construction  of  some  unusual  mechanisms,  but  the
implementation of certain well-known structures (like data containers) can become quite
tricky.

In the course of this project, the first step was the implementation of a UDP interface that
allows fraglets to be sent from one interpretation environment to another. 
Then, a fraglet-based  protocol was created, which was by far the most interesting and
difficult part of the assignment.
In the end, some measurements we performed on the performance of that protocol under
different conditions.
While  designing  the  protocol,  certain  ideas  regarding  the  further  development  have
emerged. Those are described in the last section, proposals.

In order to simplify navigation of this
document, the corresponding paragraphs
have been colour-coded as follows:

 blue - interpreter pages 3 and 4

 green - protocol pages 5 - 15

 grey - performance pages 16 and 17

 orange - proposals pages 18 and 19

Due to the highly modular nature of this assignment, the report has been kept in a similar
structure. Besides of a certain number of cross references between the sections, they are
thematically rather far apart. As the order of the sections is more or less the same as the
order in which the individual tasks were performed, it still makes a lot of sense to read
them in that order.



Part One:

The Interpreter
1. Input Files

Changing the interpreter program made it necessary to also make minimal alterations to
the input syntax, though input files written using the old syntax will still be compatible.
The only parameter changed is the node configuration parameter 'a'.

The new syntax goes as follows:

local context:
 a name
input node:
 a name ”local” port
remote node:
 a name ip-address port

Where the string 'local' means, the node will receive fraglets arriving at port port of the
machine the interpreter runs on, and an ip-address (dot notation) means that the node is
running elsewhere, and  fraglets sent to that node are actually transmitted to that port at
that address.
No instructions are executed for fraglets stored at a node declared remote.
The name used on a remote machine for the node  a  fraglet is  sent  to  is  furthermore
irrelevant, fraglets are transported without any node specification and arrive at any node
listening on that particular port at that address. In order to maintain a certain readability, it
might be wise to still use the same names for a certain node on both sides. 

Let us look at an example configuration:

 Instance A:
 a beta udp local 1138
 a gamma udp 127.0.0.1 1139

 Instance B:
 a gamma udp local 1139
 a beta udp 127.0.0.1 1138

Here,  every fraglet  on  instance A sent to  udp:gamma will  arrive at  node  gamma of
instance B, while every fraglet inside  instance B sent to  udp:beta will end up in node
beta of the A instance. 



Now, consider the following:

 Instance A:
 a alpha udp local 1138
 a beta udp 127.0.0.1 1139

 Instance B:
 a gamma udp local 1139
 a delta udp 127.0.0.1 1138

In this case, each fraglet sent to udp:beta from instance A will arrive at node gamma of
instance B,  while  each fraglet  sent  to  udp:delta from  instance B will  arrive at  node
alpha of instance A. This behaviour allows for some additional flexibility, but, in order
to conserve readability, its use should be limited to cases where the architecture of the
remote instance really is unknown.

2. Program Parameters

Two command line paramaters were added to the program:

-lose N: loses each unreliably sent packet with a probability of 1/N, 
unless N equals zero.

-log N F: logs each reaction happening at node N to a file F, using the 
same output syntax as the standard console output (at debug-level one). 

They were both necessary for the debugging of the new protocol.

3. Notes

-  All  fraglets  are  transported  in  ASCII  form.  As  the  unsigned  short
vocabulary of the environment is created at runtime, that representation
generally differs from instance to instance.

-  As  the  impact  of  interpretation-time  on  the  round-trip-time  by  far
outweighs  the  one of  the time really needed to  deliver  a  packet  over
loopback* and return the ACK,  the  wait instruction is  still  based on
instruction count and not real-time.
 See section performance for more

*) this would probably even apply if the packet was sent to Australia. No
machines located in Australia were at my disposal at the time, so this is
not confirmed.



Part Two:

The Protocol

Designing  fraglet  based  programs  may  seem  quite  difficult  in  the  beginning,  but
compared to many other things that get much easier as time goes by, it actually remains
quite mind-boggling and nerve-challenging. Still,  it  is a very interesting programming
paradigm,  and  in  the  following  I  would  like  to  demonstrate  certain  difficulties
encountered along the way, and the methods adopted to solve them – just before I face the
reader with the complexity of a diagram of the entire protocol.

In order to grant at least some perspective before we begin, here is a rough outline of the
new protocol:

- Circular data store, allowing for continuous sending of data
- Data is transmitted one symbol at a time
- Each data element is transported along with one token from a ring as header
- All tokens from the ring can be away at the same time (pipelining)
- Receiver expects one particular token, only that one is acknowledged
- Of each data element sent away, a backup is stored and a copy of the token is

placed at the end of a list
- If no ACKs arrive during a certain time interval, all backups are resent, but

neither deleted nor their tokens removed from the list
- Each incoming ACK returns the token, deletes the associated backup and

removes the first entry in the list

1. Multiple Contexts

Only after having altered the interpreter program, was it that the possibilities of multiple
contexts  became  apparent.  Until  then,  different  nodes  were  mentally  associated  with
different fraglet environments running on different machines, connected by a slow and
possibly lossy connection. Introducing real remote nodes suggested using local nodes as
local 'reaction chambers', similar to the different compartments in a living cell. 
For one, this allowed modularizing the fraglet code, so single reactions could take place
entirely  within  one  context,  while  fraglets  with  a  certain  header  could  be  used  as
interfaces  between contexts,  thereby reducing design complexity and  making keeping
track of used identifiers much easier. 
For the other, multiple contexts also allowed storing multiple associations to one symbol.
On the following pages there are two examples of the latter.



Example 1.1 - Counting

The data to be sent was supposed to be ordered, so the reordering capabilities  of the
protocol could be tested. Now, if we were handling real data, it probably would have been
wise to store all the data symbols in one singular fraglet with a specific header, and then
always slice one symbol off for transportation. In this test however, it was decided  to
store the data in a circular order, thereby allowing for a measurement of performance over
an indefinite amount of time.
This is when multiple contexts came in handy for the first time:

In one node, labeled 'producer', we have the following fraglets: 

N times producer[n(i):data(i)] (0 <= i < N),
and once producer[next_data:n(i)]

Note that symbols printed italic are placeholders for symbols of the form n0, n1, etc. (or
data0, data1, etc. respectively).

This way we know which of the N data elements is supposed to be accessed next, and can
access it easily through the reaction:

(Reaction R1):

producer[get_next] + producer[next_data:n(i)] 
+ producer[n(i):data(i)]

    ® producer [n(i):data(i)] + producer[next_data:n(i+1)] 
+ emitter[next_data:data(i)]

The details of the reaction are left out here, but they can be looked up in the fraglet code
to this report. The important thing is, we can retrieve the symbol 'n(i)' because it carries
the known header 'next_data'  in  one fraglet,  and then access the fraglet  carrying the
header  'n(i)' to  retrieve  the  corresponding  data  element  and  write  something  like
'send:udp:emitter:next_data' in front of it (although, in the real protocol, copies of the
n(i) and data(i) symbols need to be created first).

Now, the problem we are faced with is the following: After one data-element has been
accessed, how do we know which n(i) is the next one (labeled 'n(i+1)' in our case)?
The straightforward solution is  to use fraglets  containing all  n(i)s as headers and the
corresponding  n(i+1)s as  tails.  Unfortunately,  we  already  have  fraglets  carrying  the
headers n(i) in this context, so there is no way of knowing if we are attempting to access
[n(i):data(i)] or [n(i):n(i+1)]. We could try and use a different set of number-identifiers
m(i) and store the current-next relationships in this alphabet, that is, have fraglets of the
form [m(i):m(i+1)] swimming around instead. 
But even in this case, in order to translate from n(i) to m(i), we would still need fraglets
carrying n(i) as headers floating around  - as well as other fraglets with m(i)s as headers,
as those would be needed for the reverse-translation. 



So the only way to solve the problem using this approach, is by putting the current-next
relationships into a separate context - in our case it has been named 'counter'.
Then, we can use the following simple reaction to get the next n(i) into our producer:

Reaction R2:

counter[next:n(i)] + counter[n(i):n(i+1)] 
    ® producer[next_data:n(i+1)] + counter[n(i):n(i+1)] 

The producer only has to create a copy of n(i) at some point during Reaction R1, and
send it into the counter with the tag 'next' attached to it. 

Combined with Reaction R1, we receive the following interface that will deliver the next
data(i) to the node designated emitter each time it is used:

Data Retrieval Interface:

emitter[send:udp:producer:get_next]
    ® emitter[next_data:data(i)]

Image 1.1: Data Retrieval Interface



Example 1.2 - Tokens

Similar to the data elements in the data store, tokens, too, are aligned in a predefined
circular order. Now that we have used the term 'interface' in conjunction with contexts,
we can declare the expected behaviour of our token store in the form of an interface:

Token Retrieval Interface:

emitter[send:udp:token_order:get_token]
    ® emitter[token:t(i)], (as soon as the next token has been returned

to the store, or instantly if it is there)

In order for it to work, we will of course need a context named token_order.
token_order works in a similar way as counter, except for the fact that it stores the next
token itself, and that it does not send that next token to the emitter directly, but instead, it
sends it to a context named tokens, with the header confirm attached to its head.

Reaction R3:

token_order[get_token] 
+ token_order[next_token:t(i)] + token_order[t(i):t(i+1)]  

    ® tokens[confirm:t(i)] + token_order[t(i):t(i+1)] 
+ token_order[next_token:t(i+1)]

Here,  as well,  most  of the fraglets  are responsible  for copying the symbols from the
association fraglet [t(i):t(i+1)], in order to restore it after the reaction, so all of them have
been left out and can be looked up in the code.

Besides  of  the  fraglets  needed  for  the  reaction,  tokens contains  only  single-symbol
fraglets of the form [t(i)] (initially all of them). Upon arrival of a [confirm:t(i)], certain
fraglets stored in tokens try to match the arriving t(i) with one already present in tokens,
and forward it to the  emitter. The according t(i) is thereby removed from tokens. This
way, we can assure that no token can be delivered from  token_order to the  emitter,
unless (or before) we have returned the same token to tokens (we do this upon an ACK). 

Reaction R4:
tokens[confirm:t(i)] + tokens[t(i)]  ® emitter[token:t(i)] 

To prevent confusion, a [get_token] is sent from the emitter to token_order only when
another token has arrived (except for the first one of course, this is actually always the
very first instruction that is executed).

There is a diagram on the following page.



Image 1.2: Token Retrieval Interface

end examples

Those were two things that could only be accomplished using multiple contexts, because
they require multiple associations to single symbols. In example 1.1, we had to associate
numbers with data elements as well as the succeeding numbers, while in  example 1.2
tokens had to be ordered in the same circular fashion as the numbers, and we needed a
way to store the information if a token is available or not.

Note that the use of multiple contexts violates the active networking paradigm, since it
relies on an existing node architecture. This could be solved by introducing an instruction
that spawns a new node with a certain name. This instruction could also be executed at
constant time (by hanging the new node in at the head of the node-list), the removal of a
certain node, however, can not. Allowing fraglets to create nodes would also introduce
further  complications  considering  namespace uniqueness,  but  most  of  them could  be
solved by allowing nodes to reside within other nodes and making them invisible from the
outside (similarly to the way namespaces help to solve naming conflicts in C++ libraries).

 see section proposals



2. The Timer

New to the instruction set is the wait instruction. 
However, storing a separate timeout for each data packet is quite clumsy (mostly because
it is impossible to delete a packet having the symbol  wait at its head - so all backups
would have to be prevented from being resent rather than be explicitly resent). Instead,
a timer context was created, that will send a NAK to the emitter each time its timeout
runs out. Each time an ACK arrives, we can delay the timer, so it will send us a NAK
only if no ACKs have arrived for a while (it still has to be calibrated).

To build the timer, a fraglet containing a sequence of N times a singular symbol d and the
symbol ALARM at the end has been used (timeout sequence := [d:d:d:..:d:ALARM]).
Furthermore, there is (almost) always a fraglet waiting around (it has a wait instruction at
its head), to slice one d off from the head of the timeout sequence and then restore itself.
If the symbol  ALARM is  detected as  header in the context,  the NAK is sent  to  the
emitter and the timeout sequence is restored to its initial state.
If a delay is triggered (ie. the fraglet  [delay] sent to the timer), the d at the head of the
timeout sequence is simply overwritten by multiple ds.

As this is the simplest context of all, we can (for once) present all the fraglets right here:

timer[wait:match:d:split:X:*]
timer[matchp:X:wait:match:d:split:X:*]

timer[matchp:ALARM:split:send:udp:emitter:nak:*:d:d:d:d:ALARM]

timer[matchp:delay:match:d:d:d:d:d]
timer[matchp:reset:match:d:split:d:d:d:d:ALARM:*:nul]

timer[d:d:d:d:ALARM] # 'timeout sequence'

3. Lists

Storing backups of data sent away, so they can be sent again if the timeout for an ACK
runs out,  has been handled the following way: Backups of  all  outbound symbols  are
stored in one context, backups, with the t(i)s, the tokens sent away along with those data
symbols, as headers.
Furthermore, all outbound tokens are stored in a list in a context called missing_tokens.
When a  token is  sent  away, a  copy of  it  is  appended to  the  end of  the  list  and  the
associated backup is sent to backups.
When  an  ACK  arrives,  the  token  at  the  beginning  of  the  list  is  removed  and  the
corresponding backup in backups is deleted. 
When a resend is triggered, a copy of the list has to be created and one of the two lists
sent to the backups context, where it will trigger a resend of all backups associated with
the tokens contained in the list.



Fulfilling the first two conditions is easy:

To add an element to the list, we can simply write 'match:T:list' at the beginning of the
list  and  have  the  fraglet  [T:new_element] swim  around.  This  way,  new_element is
attached to the end of the list and the list carries the header 'list' afterwards.

add:
[list:t(i):t(i+1):..:t(j-1)], [missing:t(j)]

® [match:T:list:t(i):t(i+1):..:t(j-1)], [T:t(j)]

® [list::t(i):t(i+1):..:t(j-1):t(j)]

Removing an element  is  not  difficult  either,  all  we need to do is  exchange the first
element first with the symbol list and then with an asterisk, and then invoke split on the
list.

remove:
[list:t(i):t(i+1):..:t(j)]  +  [returned:t(k)]

® [exch:r0:list:t(i):..:t(j-1)]      ® [r0:t(i):list:t(i+1)..:t(j-1)]

® [exch:r1:*:t(i):list:t(i+1)..:t(j-1)]      ® [r1:t(i):*:list:t(i+1)..:t(j-1)]

® [split:a:t(i):*:list:t(i+1)..:t(j-1)]      

® [a:t(i)]  +  [list:t(i+1)..:t(j-1)]

Note that  t(k), the token returned with the ACK, is not necessarily the same as  t(i), since although the
receiver only sends an ACK for the next expected token, an ACK could be lost along the way - our protocol
cannot cope with that. It would be however rather easy to fix this, if we had the equals instruction at our
disposal. Note also that if some ACKs only arrived in the wrong order, no damage would occur.
 see section proposals

Creating a copy of the list, however, proved to be quite complicated. 
A mechanism was conceived that could split off the first entry from the list and append
two copies of it to the ends of two new lists, called list0 and list1. Unfortunately, there is
no  notification  after  the  original  list  has  been  emptied  -  the  former  list  fraglet  just
disappears  instead.  So,  in  order  to  have  a  reliable  termination  condition,  another  list
(labeled size)  has to be managed, one that has the single entry 'l' at all those positions,
where the original token list has elements. From the size list, we remove the header, put a
list_empty symbol at the end, and remove an l for each copied (token-)list-entry (we have
to move all ls to another new fraglet called new_size, so we do not lose the size list in the
process). This way, as soon as the list_empty symbol has been exposed, all elements have
been copied and we can rename one copy of the list back to  list, and send the other to
backups (after certain additional modifications). Of course, this means that the size list
has to be extended by an l each time we add an element and an l has to be removed each
time we remove one.
On  the  following  page,  I will  try and  explain  the  procedure  again  in  the  form of  a
simplified algorithm.



resend:

[list:t(i):t(i+1):..:t(j)]  +  [resend_all] + [size:l:l:..:l]
® [copied_list:t(i):t(i+1)..:t(j)] + [list0] + [list1]

 + [list_size:l:..:l:end_list] + [l] + [new_size]

on (match:l) {
[copied_list:t(i):t(i+1)..:t(j)] + [list0] + [list1]
 + [list_size:l:..:l:end_list] + [l] + [new_size]

® [copied_list:t(i):t(i+1)..:t(j)] + [list0] + [list1]
 + [list_size:l:..:l:end_list] + [new_size:l]

® [copied_list:t(i+1)..:t(j)] + [list0:t(i)] + [list1:t(i)]
 + [list_size:..:l:end_list] + [l] + [new_size:l]

}
on (match:end_list) {

[list0:t(i):t(i+1)..:t(j)] + [list1:t(i):t(i+1)..:t(j)] + [new_size:l:l:..:l]

® [list:t(i):t(i+1)..:t(j)] + [size:l:l:..:l]
 + [send:udp:backups:resend:t(i):t(i+1)..:t(j):end_list]

}
That was an attempt to describe the process of copying the list of missing tokens in a 
C-like syntax. Lots of steps have been left out. See the attached code, if you would like to
know the details.

4. Controlling Parallelism

Although, as we have seen in  paragraph 3, fraglets are rather unpractical to build data
containers (at least without the 'equals' instruction), they do make perfect semaphores.
Due to the fact that all list operations from the previous paragraph are handled in multiple
steps  (since  the  addition  of  the  size list),  and  because  all  three  events  triggering the
individual operations (ACK, NAK and SEND) could occur at practically any time, some
measures had to be taken to assure that only one of the operations can take place at a time.

The  solution  was  very simple.  Each  operation  was  altered  so  that  it  assimilates  the
[READY]-fraglet  before  it  continues,  ie.  'match:READY'  has  been  inserted  into  the
fraglet recognizing the interface-call header and after the last step of the operation has
been completed, a new [READY]-fraglet is set free. This way, as long as there is exactly
one [READY]-fraglet in the beginning, it acts as a 'natural semaphore'.



5. The Big Picture

And now, the moment we've all been waiting for - a diagram of the entire protocol. 
To enhance readability, it was split  up into three fractions, corresponding to the three
basic operations, ACK, NAK and SEND:

Image 5.1: reactions taking place when a fraglet is sent to the receptor.



Images 5.2 and 5.3: reactions taking place upon arrival of an ACK (above),
and when the timer releases a NAK (below).



6. Receptor - The Central Flaw

So far, we have only explained the emitter side of the protocol. There are two reasons for
that. 
For one, except for its capability to expect a certain token and return an ack with that
token when it arrives, it is rather simple. It does need two local nodes, but if we solved
the far graver problem, this one would also disappear. 
The other reason is a that it does not work as it is supposed to. It only expects one token,
but that does not prevent it from receiving fraglets carrying others, so it simply ignores
those, and they remain dormant. As the token set is circular, at a certain point, the tokens
of the  dormant  fraglets  become the expected ones.  At  that  point,  there is  no way of
forcing the system to favor a newly arrived fraglet  over an older one.  In fact,  as  the
current fraglet with the expected token might need some time to arrive, the dormant ones
are actually being preferred.
A very simple way out of this would be the introduction of the equals instruction. 
 see section proposals

Then, we could simply put a header specific to our protocol in front of every fraglet we
send,  match  that  header  on the receiver  side,  and either  pick the  fraglet  or  delete  it,
according to the equality between the token it carries and the expected token.
Using a specific header for incoming fraglets (ie. not a token), would then also remove
the need for a second context (that is currently used to find the succeeding token to a
specific token - see "multiple contexts, example 2").



Part Three:

Performance

Five tests have been performed. Each time, one instance of the fraglet environment was
left to send data to another instance over loopback during a time interval of two minutes.
The rate of packet loss was thereby altered between the tests (using parameter "-lose N").

The following table contains the results:

probability of
packet loss

fraglets transmitted
during two minutes

Number  of  instructions
executed  on  all  emitter
nodes together

0    34 26240

  1/ 5 29 27817

  1/ 7 30 28384

  1/10 23 18289

  1/12 23 19976

An  interesting  effect  is  the  drop  in  transmission  performance at  low  packet  loss
probabilities. This can be accounted for by the bad calibration of our timer. The timeout-
delay caused by an ACK is probably longer than the average time interval between two
succeeding ACKs, so when only a small number of packets is lost, the timeout can grow
indefinitely long. If a packet is lost under those conditions, the timeout we have to wait
out until the packets are resent can grow very long very quickly.
The main reason for this  assumption is the dropping number of instructions executed
during the two minutes, which implies that nodes were idle for a part of the time.

Although we were only sending fraglets  of  the form  [tNN:dataN] (size = 11  Bytes)
between the nodes, in order to calculate the average transmission rate, we could just as
well have sent packets of the size of one kilobyte.
A function (called test_send_times(..)) was introduced into the C-code to prove that the
impact  of  packet  size  on  the  number  of  transmitted  packets  is  insignificant  to  our
measurements. The function first sends one million packets of the size of 3  Bytes and
then one million packets of the size of 1024 Bytes and prints out the time needed for both
procedures. 
The times the function returns are the following: 3 Byte: 18 secs, and 1024 Byte: 23 secs.
The difference are only five seconds over one million packets, or, in the average, five
microseconds over one packet.



The maximal number of transmitted packets in our test series is 34, so the time difference
between  sending  34  3-Byte-packets  and  34  1-K-packets  is  about  170  microseconds,
which is only slightly more than 1.4 E-4 % of the total time, and thus clearly negligible.

So, if we now assume that we were in fact sending packets of the size of one kilobyte (1K
would still fit nicely into an IPv4 packet), our highest result, the one with no packet loss
involved, would correspond to a transmission rate of about 0.283 K/sec.

This is very low, but it can be greatly attributed to the low interpretation speed of our
environment. In order to make a projection on how performance would look like on a
theoretical  fraglet-based  architecture,  another  function  has  been  introduced,
get_instruction_count( ), that adds up all instruction counts of all nodes and sends the
sum to the console.

Our  prime  example,  the  measurement  without  packet  loss,  executes  roughly  26K
instructions on the emitter during the two minutes, and it is probably never idle (each ack
arrives  even  before  the  next  of  the  thirteen  tokens  is  away).  Now if  we imagine  an
architecture  that  could  execute  only  one  million  fraglet  instructions  per  second,  it
would allow us to execute the 26K instructions within about 26 milliseconds. Assuming
that each outbound fraglet still carries a payload of one kilobyte, that would correspond to
a transmission rate limit set at 1.3 megabytes per second.

Then, of course, other factors such as the currently neglected packet size and, most of all
bandwidth, would play the crucial role.



Part Four:

Proposals

1. the 'equals' instruction

During the design process, one feature was missed the most. Fraglets rely entirely on a
positive logic. If a fraglet with a certain header is present, a reaction can be initiated - if it
is not, the reaction will still be initiated once it arrives. There is no way of reacting to the
negative outcome of a condition.

A great help in this matter would be an instruction with the following behaviour:

 [ equals : s : t : x : y : tail ]

 ® if (x == y) [ s : tail ]
else [ t : tail ]

With this,  we could easily make the  receptor in our protocol  delete fraglets  carrying
unexpected tokens. All we would need would be a common header to all fraglets we send
to the receptor, and the following two fraglets:

Let the header be the symbol DDP, and the expected token t(i)

[match:DDP:equals:EXPECTED:nul:t(i)]
[matchp:EXPECTED: <do something with the right packet> ]

Another  use could be  found in  missing_tokens in  the reaction  that  removes a  token
returning with an ACK from the list of missing tokens. Currently, the protocol cannot
cope with a lost ACK, because there is no way to know if the token we remove from the
list really is the one that has been returned. Using the equals instruction, we could simply
keep removing tokens from the list until we get the right one (and return them all to the
list, if none of them is the right one - that is what would happen if two ACKs happened to
arrive in the wrong sequence).



2. the 'spawn' instruction

Another instruction that could make a great difference would be one that can create a
node either in the environment or the node where it is executed (the latter would require
nodes to be able reside within other nodes).
The heavy use of multiple contexts demonstrated in our protocol could only then be made
compatible with the active networking paradigm.

3. a graphical high-level fraglet language

Considering  the  very unorthodox  nature  of  fraglets  (compared  to  the  widely popular
programming languages), and the fact that 'copy-paste' commands are used much more
frequently while writing fraglet programs, one could imagine a graphical environment
that would allow the designer to compose large systems of fraglet-nodes in a very short
amount of time.
Elementary reactions such as the duplicating of symbols (accounting for a major part of
the code to this project) could then be combined to larger reactions (the program would
take  care  of  identifier-uniqueness).  Those  larger  reactions  would  be  symbolized  by
singular 'reaction objects', which in turn could be placed inside nodes.
The  overall  representation  might  look  a  little  like  the  diagrams  presented  in  this
document.
The main benefit to this would be a faster assimilation of the fraglet idea by the public,
thanks to increased accessibility - and therefore a greater probability of the concept taking
root and evolving - possibly in symbiosis with the hardware industry.



Conclusions:

Even without the extensions to the instruction set proposed above, it is possible to create
quite complex structures using fraglets. This has only been made possible by the use of
multiple  contexts,  as  they allow an isolated development of reactions in  one singular
node,  so  systems  with  a  fairly  large  degree  of  complexity  can  be  broken down  into
simpler pieces and worked out individually.
Some reactions,  however,  cannot  be  split  up,  and  in  those  cases  the  programmer  is
suddenly  confronted  with  the  full  amount  of  confusion  inherent  to  a  programming
language based on biochemistry (see lists).
It is certainly in the interest of a programmer to work on such problems and waste as little
time as  possible  on  trivial  tasks  like  duplications  of  symbols  or  the insertion  of  one
specific symbol at one specific point in a fraglet, so I think the need for a higher level
language is quite apparent - although lots of repetitive tasks can still be simplified by an
extensive use of the 'copy-paste' functionality of any text editor.
As diagrams similar to the ones presented in this report were also used in the construction
of the protocol itself, the idea of basing a higher level language entirely on such diagrams
somehow does not seem that far fetched at all - especially considering that the fraglets
paradigm emerged from a world  fascinated  by the accomplishments  made in  modern
biochemistry,  a  field  that  can  and  does  profit  greatly  from  modern  visualization
techniques (although this applies mostly to 3D visualization techniques). 
Of course, one could also easily imagine a purely text-based higher level language, but
that would take away part of the popularity potential fraglets definitely exhibit so far.
Besides  of  that,  the  performance  of  the  interpreter  is  still  a  little  problematic,  but  I
suppose something will be worked out in time.
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